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Abstract

The goal of this project is to build a singly linked list library for
GPUs with all operations implemented in CUDA which fully utilizes
the parallelism of GPUs. Our implementation of a locked-free linked
list algorithm on CUDA is novel, since it was only implemented on
multi-core processors in the previous works.
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1 Introduction

The goal of this project is to build a singly linked list library for
GPUs with all operations implemented in CUDA which fully utilizes
the parallelism of GPUs. In general, a linked list outperforms an
array in insertion and deletion operations, the time complexity of a
linked list is O(1), while it of an array is O(n). In the scenario with
many insertion and deletion operations happening simultaneously,
a traditional linked list operates sequentially. To further improve
the performance, algorithms for concurrent linked lists are already
proposed.

The difficulty for operating insertion and deletion of nodes con-
currently in a linked list lies in the conflict of different threads ac-
cessing the same address. A straightforward solution is adding lock
to the nodes or the threads, making the accesses mutual exclusive[1].
However, locked-based algorithm is ineffective as threads blocking
for each other by the locks, especially for GPU which contains
thousands of threads [6]. A more delicate solution is lock-free syn-
chronization. For lock-free concurrent linked list algorithms, [7]
first proposed a concurrent linked list algorithm, he made use of
auxiliary nodes to solve the problem of concurrently deleting two
adjacent nodes. Then Harris[5] proposed another algorithm, in
which logical marks are used to solve problems in concurrent inser-
tion and deletion. There are further improvements after Harris’, for
example, [9] added a subsequent traversal of the list which does

Unpublished working draft. Not for distribution.
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garbage collection of logically deleted nodes. [6] expanded the lock-
free algorithm to more data structures on GPU, including linked
list, hash table, skip list, and priority queue.

In this project we implemented the Harris” algorithm for lock-
free concurrent linked list with CUDA. A sequencial version linked
list is also implemented with C++ as a baseline. Our codebase can
be found at [2]. Open-source implementations of Harris’ algorithm
with PThreads and OpenMP are used as references for this CUDA
implementation, they can be found at [3] and [4].

2 Background

A thorough explanation of all possible problems that a concurrent
linked list will encounter and the solution by Harris” algorithm
is described in the paper [5]. Here we briefly summarize Harris’
solution to concurrent maintenance of ordered linked lists that is
non-blocking, using a CAS primitive. Insertion of node n after node
p:

1. next < p->next

2. n->next < next

3. CAS(address-of(p->next), next, n)

4. If the CAS operation was not successful, go back to 1.

Deletion of p->next is more involved. The naive solution of re-
setting this pointer with a single CAS runs the risk of losing data
when another thread is simultaneously inserting. Instead, two invo-
cations of CAS are needed for a correct algorithm. The first marks
the pointer p->next as deleted, changing its value but in such a
way that the original pointer can still be reconstructed. The second
actually deletes the node by resetting p->next as described in [8].

An example for a complicated case of node deletion shown in 4.
When we delete node 10, and node 20 is inserted at the meantime,
then 20 will be lost, because the CAS connecting head to 30 cannot
detect the change between 10 and30 . Harris’s Algorithm solved
this issue with introducing logical deletion mark. It uses two CAS
in the deletion of 10, one for marking the next node of 10 as a mark
of 10 beging deleted logically, another CAS for physical deletion.
For the example case, at the insertion of 20, it will detect from the
marking on 30 that 10 is logically deleted, so it will invoke search
to delete 10 physically before inserting 20 with CAS operation.

Figure 1, 2, 3 are the pseudo code of insert, remove and search
operations in Harris’ [5].

3 Methods

Due to the arbitrary access of element in the linked list, there is
almost no locality, thus shared memory cannot be utilized. The only
way to implement synchronization between arbitrary threads in a
grid is through the atomic operations executing in global memory.
Also, to support access to the arbitrary elements in the linked list,
the linked list is kept in the global memory [6].
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public boolean List::insert (KeyType key) {
Node *new_node = new Node(key);
Node *right node, *left node;

do {
right_node = search (key, &left_node);
if ((right_node != tail) && (right_node.key == key)) /*T1*/
return false;
new_node.next = right_ node;
if (CAS (&(left_node.next), right_node, new_node)) /*C2*/
return true;
} while (true); /*B3*/
}

Figure 1: List insert method attempts to insert a new node
with supplied value [5]

public boolean List::delete (KeyType search_key) {
Node *right_node, *right_node_next, *left node;

do {
right_node = search (search_key, &left_node);
if ((right_node == tail) || (right_node.key != search_key)) /*T1*/

return false;
right_node_next = right_node.next;
if (!is_marked_ reference(right_node_next))
if (CAS (&(right_node.next), /*C3*/
right_node_next, get_marked_reference (right_node_next)))
break;
} while (true); /*B4*/
if (!CAS (&(left_node.next), right_node, right_node_next)) /*Cd4*/
right_node = search (right_node.key, &left node);
return true;

}

Figure 2: List delete method attempts to delete a node with
supplied value [5]

private Node *List::search (KeyType search_key, Node **left_node) {
Node *left_node_next, *right_ node;

search_again:
do {
Node *t = head;
Node *t_next = head.next;

/* 1: Find left node and right_node */
do {
if (!is_marked reference(t_next)) {
(*left_node) = t;
left_node_next = t_next;
}

t = get_unmarked_reference(t_next);

if (t == tail) break;
t_next = t.next;
} while (is_marked reference(t_next) || (t.key<search_key)); /*Bl*/

right_node = t;

/* 2: Check nodes are adjacent */
if (left_node_next == right_node)
if ((right_node != tail) && is_marked_reference(right node.next))
goto search_again; /*Gl*/
else
return right_node; /*R1*/

/* 3: Remove one or more marked nodes */
if (CAS (&(left_node.next), left_node_next, right_node)) /*Cl*/

if ((right_node != tail) && is_marked_reference(right_ node.next))
goto search_again; /*G2*/
else

return right_node; /*R2*/
} while (true); /*B2*/
}

Figure 3: List search method finds the left and right nodes
with supplied value [5]

Comparing to a sequential algorithm, the overhead of the par-
allel algorithm is at the stage of initializing the linked list on GPU,
which includes:

Trovato et al.

Figure 4: A Complicated Case of Node Deletion

o ListSearch for searching a node in the linked list, which
cannot be paralleled.

o ListTraversal for deleting nodes at last.

o Allocation of global memory on GPU.

e Moving linked list data and operations data from CPU to
GPU.

e Creation of linked list by adding nodes sequentially.

In our experiments comparing the performance with sequential
algorithm, we are not counting the data allocation and data moving
time. We only compare the massive arbitrary insertion and deletion
operating time.

The parallelism is achieved by defining insertion, deletion,
traversal, searching operations as global kernel functions, which
support parallel execution for two or more threads, with each of
the thread handles one operation for an arbitrary node.

3.1 Lock-free Data Structure Memory
Management

We made some modifications to the original algorithm to tackle
memory management issues. Memory management is one of the
most cumbersome problems on lock-free data structures. In other
words, when a thread removes a node from the structure, it cannot
always free the memory for that node, because other threads might
be holding a reference to this memory. Therefore, as a trade-off, on
a remove operation the memory of the removed node will not be
freed in our implementation, only deleted physically, which means
prev->next points to cur->next. Additionally, this approach entails
every insertion allocating a new node.

3.2 Logical Deletion Mark with Metadata
Tagging

[5] proposed logical deletion mark in deletion. That means using
double CAS for deletion, where one CAS is to change the pointer,
another is to change logical deletion mark. We implemented the
logical deletion mark with metadata tagging technique. The lowest
three bits of a pointer’s binary address is empty, so they can be
used to store additional information. Thus, we use the lowest bit
of the node pointer’s address as a mark of being deleted logically,
where 1 represents marked (deleted logically) and 0 represents
unmarked (not deleted, still in the list). Specifically, the pointer
address are converted to unsigned long long typed data to get their
binary address, and three bitwise operators are defined for checking
mark status or modifying the mark:

e IS_MARKED(p) Conduct bitwise AND operation with the
pointer’s binary address with unsigned long long 1, which is
2024-11-12 02:42. Page 2 of 1-6.
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000...0001, then cast a int type conversion on it. The result is
1 if a list node pointer has been marked, otherwise 0.

o GET_MARKED_REF(p) Conduct bitwise OR operation with
the pointer’s binary address with unsigned long long 1. The
result is the reference of the pointer with lowest bit set as
1, which means a node is marked. After a node is success-
fully deleted logically, the node pointer is marked with this
operation.

e GET_MARKED_REF(p) Conduct bitwise NOT operation
with the pointer’s binary address with unsigned long long 1,
which is 111...1110. The result is the reference of the pointer
with lowest bit set as 0, which means node mark removed.
It is used for obtaining the actual address of any pointer,
especially for a marked node.

The introducing of metadata tagging technique to mark the deleted
nodes highlights its advantage in reducing memory usage and
speedup the algorithm.

3.3 A Modification to Physical Deletion

In Harris’ algorithm, the node is deleted physically (prev->next
points to cur->next) in delete operation. It first tries to use CAS to
modify the pointer, if failed, it will call search operation and delete
the node in search as in Figure 2. In practice [4] [3], search is invoked
by other insert and delete operations, as theses operations include
searching for the target node at the beginning, rather than invoked
everytime inside delete after logically deletion. We understand the
reason of doing this, as in our experiments, invoking search inside
delete significantly slows down the algorithm. However, it cannot
guarantee all logically deleted nodes are physically deleted, since
invoking search later is not guaranteed to traverse the whole list.
Therefore, we add a traverse delete operation after all insertion and
deletions, in which the marked nodes are deleted in the traversal.
This can guarantee all logically deleted nodes are deleted physically
at the end of all operations. Our approach can reach a better balance
between performance and memory management.

Below is the added kernel function listTraverseDel to delete
marked nodes physically.

__device__ void listTraverseDel()

{
struct node *cur, *prev, *p, *prev_next; prev=head;
cur=head->next;
for(cur=head->next; cur->next; cur=(struct nodex)
GET_UNMARKED_REF (cur->next))
{
if (IS_MARKED(cur->next))
continue;
if(prev->next!=cur)
prev->next=cur;
prev=cur;
3
}

4 Experiments

We conducted experiments to analyze the speedup with different
problem size, the scalability and overhead of the parallel program,
and the collision while using atomic operations.

2024-11-12 02:42. Page 3 of 1-6.
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4.1 Environment Setup

GPU settings: NVIDIA GeForce RTX 3090 with compute capability
8.6.

4.2 Overall Performance

In this experiment, we measure the speedup of conducting a set of
insertion and deletion operations comparing to sequential version.
To change the problem size, there are two parameters, one is Nj,
the number of nodes in the initial linked list, the other is N», the
number of operations. The operations (insert or remove) and the
operating nodes are all generated randomly. Check Appendix A for
data format.

We want to have as much parallelism as possible to see when
it achieves maximum speedup, so we try to uses many threads as
possible, we set the number of blocks to 32, the number of threads
to 1024.

4.2.1 Experiment 1. Fix the number of initial list nodes to 10000,
modify the number of operations in {100, 1000, 10000, 100000,
100000}, to see when it gets the highest speedup.

Time - #0perations
#Nodes=10000

4550.7

Time /[ msec

100 1000 10000
Num of Operations

100000

Figure 5: Time of Experiment 1

Ny (Nu'm of Sequential Time / Parallel Time / ms
Operations) ms
100 1.5 6.9
1,000 13.6 11.9
10,000 224.3 19.6
100,000 4550.7 2153

Table 1: Time Measurement of Experiment 1

From Figure 7 we can conclude that the number of operations has
a significant impact on speedup. It needs to be large enough to have
a significant speedup. When the number of operations is 100000
and the number of list nodes is 10000, it has 68x speedup compared
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Speedup - #0perations
#Nodes=10000

21.1

100 1000 10000
Num of Operations

100000

Figure 6: Speedup of Experiment 1

to the benchmark on CPU. The reason is that the traversal of the list
takes equivalent time for both GPU and CPU, the insertion/deletion
can be executed in parallel. In each insertion or deletion, it traverses
the list to search for the target node, so the larger is the number
of operations compared to the number of list nodes, the higher the
speedup is.

4.2.2  Experiment 2. Fix the number of operations to 10000, modify
the number of list nodes in {100, 1000, 10000, 20000, 30000, 40000},
to see when it gets the highest speedup.

Time - #Nodes
#0ps=100000

24816
1 13787
10% 4 8920
1 4559
o |
/]
wl
£ 10° 4
v 1
£ ] 266 71
F 1 05 43
1 138 140
102 108
1 22

100 1000

10000 20000 30000 40000
Num of Nodes

Figure 7: Time of Experiment 2

From Figure 8 we can conclude that the number of nodes need to
be large enough to have significant speedup. When the number of
list nodes is 40000, with the number of operations fixed to 100000, it

Trovato et al.

Speedup - #Nodes
#0ps=100000

102
100 ~

80 4
67.4

Speedup

40
326 32.9

20 1

0.2 1.9
T T
100 1000

10000 20000 30000 40000
Num of Nodes

Figure 8: Speedup of Experiment 2

Ni (Num of List | Sequential Time / Parallel Time / ms

Nodes) ms

100 22.3 107.5

1,000 265.9 138.5

10,000 4559.0 139.9

20,000 8919.7 271.2

30,000 13786.9 204.6

40,000 24816.4 243.3

Table 2: Time Measurement of Experiment 2

has the highest speedup 141x compared to the benchmark on CPU.
For N1=50000 or larger, the GPU version cannot execute correctly.
The reason is that the algorithm does not release the memory of
deleted nodes, which causes memory leakage.

4.3 Scalability

In this experiment, we analyze the scalability of the parallel algo-
rithm. We fix the number of nodes to 10000 and number of opera-
tions to 10000, the number of blocks ranges from {1, 2, 4, 8, 16}, the
number threads per block ranges from {1,2,4,8,16,32,64,128,256,512}.

From Figure 9 we can conclude that it can speedup as the number
of threads increases. Only when the threads is more than 512 it is
faster than sequential algorithm.

4.4 Overhead Analysis

In this experiment, we analyzed the GPU and CPU performance,
accounting for overhead work on a list of 10,000 nodes. The results
are shown in Figures 10 From these, we see that overhead remains
higher than the kernel time for the gpu under 1e5 operations. The
cpu overhead stays low for the same range with the kernel time
increasing greatly around 1le5 operations.
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Scalability
#0ps=10000, #Nodes=10000
—8— Parallel
—— Sequential
105 4
v
a
e
=
2 19
2 104
=
2
£
'_
107 3
10° 10! 102 10° 10*
Num of Threads
Figure 9: Scalability
Num of Total . Throughput /
T
Threads ime /ms Ops/s
1 21077.2 474
2 16640.5 600
4 11303.2 884
8 6747.5 1482
16 3818.6 2618
32 2125.5 4704
64 1062.4 9412
128 541.8 18456
256 281.8 35486
512 150.0 66666
1024 (2*512) 86.3 115874
2048 (47512) 53.3 187617
4096 (8*512) 37.13 269323
9192 (16*512) 25.5 392156
1 Thread Sequential 2243 44583

Table 3: Scalability

5 Collision of Operations by Different Threads

In this experiment, we analyze the collisions of operations by differ-
ent threads. If the collision happens, the operation is unsuccessful
and need to do again, which may costs extra time. Specifically, we
conduct experiments to measure the collisions happening in two
possible circumstances:

(1) In delete operation. After assigning right node variable
with the next node of current node, we use CUDA atomicCAS to
set actual cur->next as marked right node. If this actual right node
is not the same as the assigned value before this atomic operation,
that means other nodes are inserted meantime. Then we need to
abort the deletion attempt, and search for the target node again.
2024-11-12 02:42. Page 5 of 1-6.
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Overhead vs. Kernel Time for CPU and GPU

GPU Overhead Time (ms)
100000 { —®— GPU Kernel Time (ms)
—e~ CPU Overhead Time (ms)
—e— CPU Kemnel Time (ms)

80000

60000

Time (ms)

40000 4

20000 4

1e2 le3 le4 1e5 1e6
Num of Ops

Figure 10: Overhead vs. Kernel Time for CPU and GPU

When the actual right is the same node as the right node, it means
the logical deletion is completed correctly.

(2) In search operation. We delete marked nodes between the
left and the current node. Loop from left to current node, if there is
any unmarked node, it is inserted meantime, so we neet to abort
the deletion attempt and search again, until no unmarked nodes in
between. After that, we try to physically delete the marked nodes
between left and right.

In the experiment, we fix the number of operations to 1000, the
number of nodes to 1000. We change number of threads from 1 to
4096. From Figure 11 we can see, when the number of thread is
1, there is no collision as expected, since the algorithm becomes
sequential. When the number of threads is fewer than numer of
operations, the number of collisions increase with the increase of
number of threads. When there are more threads than operations,
the collision does not increase significantly. The ratio of the number
of collisions / the number of active threads is around 10%. The
number of active threads is min(#threads, #ops). That means the
algorithm and our implementation is effective.

Num of Total . Collisions / 1000
Time / msec

Threads Ops
Sequential 1.7 -
1 109.1 0
16 28.2 2
128 5.2 15
512 2.4 56

2*512 1.6 109
4*512 1.8 97

8*512 1.7 113

Table 4: Collisions of Operations

5.0.1 Experiment 2.

6 Conclusion and Future Work

We implemented Harris” algorithm with CUDA correctly, and eval-
uated it in comparison with sequential implementation. There are
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Collisions
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Figure 11: Collisions of Operations

still space for improvement, yet to be addressed. We need to tackle
garbage collection in the future. Furthermore, several approaches
can be also be investigated to mitigate the overhead especially the
memory transfers and using an optimal grid configuration.
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A Data Format

The operations are all generated randomly. For the initial linked
list, each node has a unique value. The inserting nodes have unique
values not duplicated with initial list nodes. The removing nodes
are all from the initial linked list, not from the inserted nodes.
listnodes.txt: including initial linked list node values

5 // The number of nodes 5
4 // The node value
3

21

Collision Rate

Trovato et al.

operations.txt: including operations to be conducted in parallel

3 // The number of operations

126 // <insert> <target node value> <insert value>
01 // <remove> <target node value>

138

B Library API

Note: head is defined on device, inaccessible from the host. The
APIs are global kernel functions.

__global__ void listInit()

Initialize a linked list, create a head node, with node->data equal
to -1 and node->next pointing to tail, and a tail node, with node-
>data equal to -1 and node->next pointing to NULL.

__global__ void addFront(int val)

Create a node with the given value and add it after the head
node.

__global__ void addFront(int *arr, int N)

Create a sequence of nodes and add the after head node sequen-
tially.

__global__ void listPrint()

Print the linked list from head to tail, and print the number of
nodes.

__global__ void listPrintLen()

Print the list length.

__global__ void listPrintRaw()

Print all nodes in the list, including those marked as deleted
logically but not deleted physically yet.

__global__ void listTraverse()

It is a wrapper of __device__ void listTraverseDel(). Tra-
verse the linked list and delete all the marked nodes physically
(modify the pointers pointing to them).

__global__ void listInsert(int *ops, int *insertVals,
int xinsertPrevs, int N)

Operate insertions in parallel.

__global__ void listRemove(int *ops, int *Vals, int
N)

Operate deletions in parallel. Remove the nodes logically, mark-
ing them as deleted.
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